Skip to content

Instrument Model

For each Observation (see Data Containers), a unique instrument model is specified. This includes the set of detectors, their properties, and other metadata about the overall telescope.

toast.instrument.Site

Bases: object

Site base class.

Parameters:

Name Type Description Default
name str

Site name

required
uid int

Unique identifier. If not specified, constructed from a hash of the site name.

None
Source code in toast/instrument.py
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
class Site(object):
    """Site base class.

    Args:
        name (str):  Site name
        uid (int):  Unique identifier.  If not specified, constructed from a hash
            of the site name.

    """

    def __init__(self, name, uid=None):
        self.name = name
        self.uid = uid
        if self.uid is None:
            self.uid = name_UID(self.name)

    def _position(self, times):
        raise NotImplementedError("Derived class must implement _position()")

    def position(self, times):
        """Get the site position in solar system barycentric cartesian vectors.

        Given timestamps in POSIX seconds since 1970 (UTC), return the position as
        solar system coordinates.

        Args:
            times (array):  The timestamps.

        Returns:
            (array):  The position vectors.

        """
        return self._position(times)

    def _velocity(self, times):
        raise NotImplementedError("Derived class must implement _velocity()")

    def velocity(self, times):
        """Get the site velocity in solar system barycentric cartesian vectors.

        Given timestamps in POSIX seconds since 1970 (UTC), return the velocity as
        quaternions in solar system barycentric coordinates.

        Args:
            times (array):  The timestamps.

        Returns:
            (array):  The velocity vectors.

        """
        return self._velocity(times)

    def position_velocity(self, times):
        """Get the site position and velocity.

        Convenience function to simultaneously return the position and velocity.

        Args:
            times (array):  The timestamps.

        Returns:
            (tuple):  The position and velocity arrays of vectors.

        """
        if hasattr(self, "_position_velocity"):
            return self._position_velocity(times)
        else:
            p = self._position(times)
            v = self._velocity(times)
        return (p, v)

    def __repr__(self):
        value = "<Site '{}' : uid = {}>".format(self.name, self.uid)
        return value

    def __eq__(self, other):
        if self.name != other.name:
            return False
        if self.uid != other.uid:
            return False
        return True

    def __ne__(self, other):
        return not self.__eq__(other)

    @classmethod
    def _load_hdf5(cls, handle, comm=None, **kwargs):
        raise NotImplementedError("Derived class must implement _load_hdf5()")

    @classmethod
    def load_hdf5(cls, handle, comm=None, **kwargs):
        """Load the site from an HDF5 group.

        This checks for the site_class attribute and dispatches to the correct
        class method.

        Args:
            handle (h5py.Group):  The group containing the site information.
            comm (MPI.Comm):  If loading from a file, optional communicator.

        Returns:
            None

        """
        # Determine if we need to broadcast results.  This occurs if only one process
        # has the file open but the communicator has more than one process.
        need_bcast = hdf5_use_serial(handle, comm) and comm is not None

        site_class_name = None
        if handle is not None:
            site_class_name = str(handle.attrs["site_class"])
        if need_bcast:
            site_class_name = comm.bcast(site_class_name, root=0)
        site_class = import_from_name(site_class_name)
        return site_class._load_hdf5(handle, comm=comm, **kwargs)

    def _save_hdf5(self, handle, comm=None, **kwargs):
        raise NotImplementedError("Derived class must implement _save_hdf5()")

    def save_hdf5(self, handle, comm=None, **kwargs):
        """Save the site to an HDF5 group.

        Args:
            handle (h5py.Group):  The parent group for saving site properties.
            comm (MPI.Comm):  If saving to a file, optional communicator.

        Returns:
            None

        """
        if handle is not None:
            handle.attrs["site_class"] = object_fullname(self.__class__)
        self._save_hdf5(handle, comm=comm, **kwargs)

name = name instance-attribute

uid = uid instance-attribute

__eq__(other)

Source code in toast/instrument.py
131
132
133
134
135
136
def __eq__(self, other):
    if self.name != other.name:
        return False
    if self.uid != other.uid:
        return False
    return True

__init__(name, uid=None)

Source code in toast/instrument.py
66
67
68
69
70
def __init__(self, name, uid=None):
    self.name = name
    self.uid = uid
    if self.uid is None:
        self.uid = name_UID(self.name)

__ne__(other)

Source code in toast/instrument.py
138
139
def __ne__(self, other):
    return not self.__eq__(other)

__repr__()

Source code in toast/instrument.py
127
128
129
def __repr__(self):
    value = "<Site '{}' : uid = {}>".format(self.name, self.uid)
    return value

_load_hdf5(handle, comm=None, **kwargs) classmethod

Source code in toast/instrument.py
141
142
143
@classmethod
def _load_hdf5(cls, handle, comm=None, **kwargs):
    raise NotImplementedError("Derived class must implement _load_hdf5()")

_position(times)

Source code in toast/instrument.py
72
73
def _position(self, times):
    raise NotImplementedError("Derived class must implement _position()")

_save_hdf5(handle, comm=None, **kwargs)

Source code in toast/instrument.py
172
173
def _save_hdf5(self, handle, comm=None, **kwargs):
    raise NotImplementedError("Derived class must implement _save_hdf5()")

_velocity(times)

Source code in toast/instrument.py
90
91
def _velocity(self, times):
    raise NotImplementedError("Derived class must implement _velocity()")

load_hdf5(handle, comm=None, **kwargs) classmethod

Load the site from an HDF5 group.

This checks for the site_class attribute and dispatches to the correct class method.

Parameters:

Name Type Description Default
handle Group

The group containing the site information.

required
comm Comm

If loading from a file, optional communicator.

None

Returns:

Type Description

None

Source code in toast/instrument.py
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
@classmethod
def load_hdf5(cls, handle, comm=None, **kwargs):
    """Load the site from an HDF5 group.

    This checks for the site_class attribute and dispatches to the correct
    class method.

    Args:
        handle (h5py.Group):  The group containing the site information.
        comm (MPI.Comm):  If loading from a file, optional communicator.

    Returns:
        None

    """
    # Determine if we need to broadcast results.  This occurs if only one process
    # has the file open but the communicator has more than one process.
    need_bcast = hdf5_use_serial(handle, comm) and comm is not None

    site_class_name = None
    if handle is not None:
        site_class_name = str(handle.attrs["site_class"])
    if need_bcast:
        site_class_name = comm.bcast(site_class_name, root=0)
    site_class = import_from_name(site_class_name)
    return site_class._load_hdf5(handle, comm=comm, **kwargs)

position(times)

Get the site position in solar system barycentric cartesian vectors.

Given timestamps in POSIX seconds since 1970 (UTC), return the position as solar system coordinates.

Parameters:

Name Type Description Default
times array

The timestamps.

required

Returns:

Type Description
array

The position vectors.

Source code in toast/instrument.py
75
76
77
78
79
80
81
82
83
84
85
86
87
88
def position(self, times):
    """Get the site position in solar system barycentric cartesian vectors.

    Given timestamps in POSIX seconds since 1970 (UTC), return the position as
    solar system coordinates.

    Args:
        times (array):  The timestamps.

    Returns:
        (array):  The position vectors.

    """
    return self._position(times)

position_velocity(times)

Get the site position and velocity.

Convenience function to simultaneously return the position and velocity.

Parameters:

Name Type Description Default
times array

The timestamps.

required

Returns:

Type Description
tuple

The position and velocity arrays of vectors.

Source code in toast/instrument.py
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
def position_velocity(self, times):
    """Get the site position and velocity.

    Convenience function to simultaneously return the position and velocity.

    Args:
        times (array):  The timestamps.

    Returns:
        (tuple):  The position and velocity arrays of vectors.

    """
    if hasattr(self, "_position_velocity"):
        return self._position_velocity(times)
    else:
        p = self._position(times)
        v = self._velocity(times)
    return (p, v)

save_hdf5(handle, comm=None, **kwargs)

Save the site to an HDF5 group.

Parameters:

Name Type Description Default
handle Group

The parent group for saving site properties.

required
comm Comm

If saving to a file, optional communicator.

None

Returns:

Type Description

None

Source code in toast/instrument.py
175
176
177
178
179
180
181
182
183
184
185
186
187
188
def save_hdf5(self, handle, comm=None, **kwargs):
    """Save the site to an HDF5 group.

    Args:
        handle (h5py.Group):  The parent group for saving site properties.
        comm (MPI.Comm):  If saving to a file, optional communicator.

    Returns:
        None

    """
    if handle is not None:
        handle.attrs["site_class"] = object_fullname(self.__class__)
    self._save_hdf5(handle, comm=comm, **kwargs)

velocity(times)

Get the site velocity in solar system barycentric cartesian vectors.

Given timestamps in POSIX seconds since 1970 (UTC), return the velocity as quaternions in solar system barycentric coordinates.

Parameters:

Name Type Description Default
times array

The timestamps.

required

Returns:

Type Description
array

The velocity vectors.

Source code in toast/instrument.py
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
def velocity(self, times):
    """Get the site velocity in solar system barycentric cartesian vectors.

    Given timestamps in POSIX seconds since 1970 (UTC), return the velocity as
    quaternions in solar system barycentric coordinates.

    Args:
        times (array):  The timestamps.

    Returns:
        (array):  The velocity vectors.

    """
    return self._velocity(times)

toast.instrument.GroundSite

Bases: Site

Site on the Earth.

This represents a fixed location on the Earth.

Parameters:

Name Type Description Default
name str

Site name

required
lat Quantity

Site latitude.

required
lon Quantity

Site longitude.

required
alt Quantity

Site altitude.

required
uid int

Unique identifier. If not specified, constructed from a hash of the site name.

None
weather Weather

Weather information for this site.

None
Source code in toast/instrument.py
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
class GroundSite(Site):
    """Site on the Earth.

    This represents a fixed location on the Earth.

    Args:
        name (str):  Site name
        lat (Quantity):  Site latitude.
        lon (Quantity):  Site longitude.
        alt (Quantity):  Site altitude.
        uid (int):  Unique identifier.  If not specified, constructed from a hash
            of the site name.
        weather (Weather):  Weather information for this site.
    """

    def __init__(self, name, lat, lon, alt, uid=None, weather=None):
        super().__init__(name, uid)
        self.earthloc = coord.EarthLocation.from_geodetic(lon, lat, height=alt)
        self.weather = weather

    def __repr__(self):
        value = "<GroundSite '{}' : uid = {}, lon = {}, lat = {}, alt = {}, weather = {}>".format(
            self.name,
            self.uid,
            self.earthloc.lon,
            self.earthloc.lat,
            self.earthloc.height,
            self.weather,
        )
        return value

    def __eq__(self, other):
        if self.name != other.name:
            return False
        if self.uid != other.uid:
            return False
        if not np.isclose(other.earthloc.lon, self.earthloc.lon):
            return False
        if not np.isclose(other.earthloc.lat, self.earthloc.lat):
            return False
        if not np.isclose(other.earthloc.height, self.earthloc.height):
            return False
        if self.weather != other.weather:
            return False
        return True

    def _position_velocity(self, times):
        # Compute data at 10 second intervals and interpolate.  If the timestamps are
        # more coarsely sampled than that, just compute those times directly.
        sparse_incr = 10.0
        do_interp = True
        if len(times) < 100 or (times[1] - times[0]) > sparse_incr:
            do_interp = False

        if do_interp:
            n_sparse = int((times[-1] - times[0]) / sparse_incr)
            sparse_times = np.linspace(times[0], times[-1], num=n_sparse, endpoint=True)
        else:
            n_sparse = len(times)
            sparse_times = times
        pos_x = np.zeros(n_sparse, np.float64)
        pos_y = np.zeros(n_sparse, np.float64)
        pos_z = np.zeros(n_sparse, np.float64)
        vel_x = np.zeros(n_sparse, np.float64)
        vel_y = np.zeros(n_sparse, np.float64)
        vel_z = np.zeros(n_sparse, np.float64)
        for i, t in enumerate(sparse_times):
            atime = astime.Time(t, format="unix")
            p, v = coord.get_body_barycentric_posvel("earth", atime)
            # FIXME:  apply translation from earth center to earth location.
            # itrs = self.earthloc.get_itrs(obstime)
            pm = p.xyz.to_value(u.kilometer)
            vm = v.xyz.to_value(u.kilometer / u.second)
            pos_x[i] = pm[0]
            pos_y[i] = pm[1]
            pos_z[i] = pm[2]
            vel_x[i] = vm[0]
            vel_y[i] = vm[1]
            vel_z[i] = vm[2]

        if do_interp:
            pos_x = np.interp(times, sparse_times, pos_x)
            pos_y = np.interp(times, sparse_times, pos_y)
            pos_z = np.interp(times, sparse_times, pos_z)
            vel_x = np.interp(times, sparse_times, vel_x)
            vel_y = np.interp(times, sparse_times, vel_y)
            vel_z = np.interp(times, sparse_times, vel_z)
        pos = np.stack([pos_x, pos_y, pos_z], axis=-1)
        vel = np.stack([vel_x, vel_y, vel_z], axis=-1)
        return pos, vel

    def _position(self, times):
        p, v = self._position_velocity(times)
        return p

    def _velocity(self, times):
        p, v = self._position_velocity(times)
        return v

    @classmethod
    def _load_hdf5(cls, handle, comm=None, **kwargs):
        """Load the site from an HDF5 group.

        Args:
            handle (h5py.Group):  The group containing the site information.
            comm (MPI.Comm):  If loading from a file, optional communicator.

        Returns:
            None

        """
        # Determine if we need to broadcast results.  This occurs if only one process
        # has the file open but the communicator has more than one process.
        need_bcast = hdf5_use_serial(handle, comm) and comm is not None

        site_name = None
        site_uid = None
        site_alt_m = None
        site_lat_deg = None
        site_lon_deg = None
        weather_class_name = None
        if handle is not None:
            site_name = str(handle.attrs["site_name"])
            site_uid = int(handle.attrs["site_uid"])
            site_alt_m = float(handle.attrs["site_alt_m"])
            site_lat_deg = float(handle.attrs["site_lat_deg"])
            site_lon_deg = float(handle.attrs["site_lon_deg"])
            if "weather_class" in handle.attrs:
                weather_class_name = str(handle.attrs["weather_class"])

        if need_bcast:
            site_name = comm.bcast(site_name, root=0)
            site_uid = comm.bcast(site_uid, root=0)
            site_alt_m = comm.bcast(site_alt_m, root=0)
            site_lat_deg = comm.bcast(site_lat_deg, root=0)
            site_lon_deg = comm.bcast(site_lon_deg, root=0)
            weather_class_name = comm.bcast(weather_class_name, root=0)

        weather = None
        if weather_class_name is not None:
            weather_class = import_from_name(weather_class_name)
            weather = weather_class.load_hdf5(handle, comm=comm, **kwargs)

        return cls(
            site_name,
            site_lat_deg * u.degree,
            site_lon_deg * u.degree,
            site_alt_m * u.meter,
            uid=site_uid,
            weather=weather,
        )

    def _save_hdf5(self, handle, comm=None, **kwargs):
        if handle is not None:
            handle.attrs["site_name"] = self.name
            handle.attrs["site_uid"] = self.uid
            handle.attrs["site_lat_deg"] = float(self.earthloc.lat.to_value(u.degree))
            handle.attrs["site_lon_deg"] = float(self.earthloc.lon.to_value(u.degree))
            handle.attrs["site_alt_m"] = float(self.earthloc.height.to_value(u.meter))
            if self.weather is not None:
                self.weather.save_hdf5(handle, comm=comm, **kwargs)

earthloc = coord.EarthLocation.from_geodetic(lon, lat, height=alt) instance-attribute

weather = weather instance-attribute

__eq__(other)

Source code in toast/instrument.py
222
223
224
225
226
227
228
229
230
231
232
233
234
235
def __eq__(self, other):
    if self.name != other.name:
        return False
    if self.uid != other.uid:
        return False
    if not np.isclose(other.earthloc.lon, self.earthloc.lon):
        return False
    if not np.isclose(other.earthloc.lat, self.earthloc.lat):
        return False
    if not np.isclose(other.earthloc.height, self.earthloc.height):
        return False
    if self.weather != other.weather:
        return False
    return True

__init__(name, lat, lon, alt, uid=None, weather=None)

Source code in toast/instrument.py
206
207
208
209
def __init__(self, name, lat, lon, alt, uid=None, weather=None):
    super().__init__(name, uid)
    self.earthloc = coord.EarthLocation.from_geodetic(lon, lat, height=alt)
    self.weather = weather

__repr__()

Source code in toast/instrument.py
211
212
213
214
215
216
217
218
219
220
def __repr__(self):
    value = "<GroundSite '{}' : uid = {}, lon = {}, lat = {}, alt = {}, weather = {}>".format(
        self.name,
        self.uid,
        self.earthloc.lon,
        self.earthloc.lat,
        self.earthloc.height,
        self.weather,
    )
    return value

_load_hdf5(handle, comm=None, **kwargs) classmethod

Load the site from an HDF5 group.

Parameters:

Name Type Description Default
handle Group

The group containing the site information.

required
comm Comm

If loading from a file, optional communicator.

None

Returns:

Type Description

None

Source code in toast/instrument.py
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
@classmethod
def _load_hdf5(cls, handle, comm=None, **kwargs):
    """Load the site from an HDF5 group.

    Args:
        handle (h5py.Group):  The group containing the site information.
        comm (MPI.Comm):  If loading from a file, optional communicator.

    Returns:
        None

    """
    # Determine if we need to broadcast results.  This occurs if only one process
    # has the file open but the communicator has more than one process.
    need_bcast = hdf5_use_serial(handle, comm) and comm is not None

    site_name = None
    site_uid = None
    site_alt_m = None
    site_lat_deg = None
    site_lon_deg = None
    weather_class_name = None
    if handle is not None:
        site_name = str(handle.attrs["site_name"])
        site_uid = int(handle.attrs["site_uid"])
        site_alt_m = float(handle.attrs["site_alt_m"])
        site_lat_deg = float(handle.attrs["site_lat_deg"])
        site_lon_deg = float(handle.attrs["site_lon_deg"])
        if "weather_class" in handle.attrs:
            weather_class_name = str(handle.attrs["weather_class"])

    if need_bcast:
        site_name = comm.bcast(site_name, root=0)
        site_uid = comm.bcast(site_uid, root=0)
        site_alt_m = comm.bcast(site_alt_m, root=0)
        site_lat_deg = comm.bcast(site_lat_deg, root=0)
        site_lon_deg = comm.bcast(site_lon_deg, root=0)
        weather_class_name = comm.bcast(weather_class_name, root=0)

    weather = None
    if weather_class_name is not None:
        weather_class = import_from_name(weather_class_name)
        weather = weather_class.load_hdf5(handle, comm=comm, **kwargs)

    return cls(
        site_name,
        site_lat_deg * u.degree,
        site_lon_deg * u.degree,
        site_alt_m * u.meter,
        uid=site_uid,
        weather=weather,
    )

_position(times)

Source code in toast/instrument.py
282
283
284
def _position(self, times):
    p, v = self._position_velocity(times)
    return p

_position_velocity(times)

Source code in toast/instrument.py
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
def _position_velocity(self, times):
    # Compute data at 10 second intervals and interpolate.  If the timestamps are
    # more coarsely sampled than that, just compute those times directly.
    sparse_incr = 10.0
    do_interp = True
    if len(times) < 100 or (times[1] - times[0]) > sparse_incr:
        do_interp = False

    if do_interp:
        n_sparse = int((times[-1] - times[0]) / sparse_incr)
        sparse_times = np.linspace(times[0], times[-1], num=n_sparse, endpoint=True)
    else:
        n_sparse = len(times)
        sparse_times = times
    pos_x = np.zeros(n_sparse, np.float64)
    pos_y = np.zeros(n_sparse, np.float64)
    pos_z = np.zeros(n_sparse, np.float64)
    vel_x = np.zeros(n_sparse, np.float64)
    vel_y = np.zeros(n_sparse, np.float64)
    vel_z = np.zeros(n_sparse, np.float64)
    for i, t in enumerate(sparse_times):
        atime = astime.Time(t, format="unix")
        p, v = coord.get_body_barycentric_posvel("earth", atime)
        # FIXME:  apply translation from earth center to earth location.
        # itrs = self.earthloc.get_itrs(obstime)
        pm = p.xyz.to_value(u.kilometer)
        vm = v.xyz.to_value(u.kilometer / u.second)
        pos_x[i] = pm[0]
        pos_y[i] = pm[1]
        pos_z[i] = pm[2]
        vel_x[i] = vm[0]
        vel_y[i] = vm[1]
        vel_z[i] = vm[2]

    if do_interp:
        pos_x = np.interp(times, sparse_times, pos_x)
        pos_y = np.interp(times, sparse_times, pos_y)
        pos_z = np.interp(times, sparse_times, pos_z)
        vel_x = np.interp(times, sparse_times, vel_x)
        vel_y = np.interp(times, sparse_times, vel_y)
        vel_z = np.interp(times, sparse_times, vel_z)
    pos = np.stack([pos_x, pos_y, pos_z], axis=-1)
    vel = np.stack([vel_x, vel_y, vel_z], axis=-1)
    return pos, vel

_save_hdf5(handle, comm=None, **kwargs)

Source code in toast/instrument.py
343
344
345
346
347
348
349
350
351
def _save_hdf5(self, handle, comm=None, **kwargs):
    if handle is not None:
        handle.attrs["site_name"] = self.name
        handle.attrs["site_uid"] = self.uid
        handle.attrs["site_lat_deg"] = float(self.earthloc.lat.to_value(u.degree))
        handle.attrs["site_lon_deg"] = float(self.earthloc.lon.to_value(u.degree))
        handle.attrs["site_alt_m"] = float(self.earthloc.height.to_value(u.meter))
        if self.weather is not None:
            self.weather.save_hdf5(handle, comm=comm, **kwargs)

_velocity(times)

Source code in toast/instrument.py
286
287
288
def _velocity(self, times):
    p, v = self._position_velocity(times)
    return v

toast.instrument.SpaceSite

Bases: Site

Site with no atmosphere.

This represents a location beyond the Earth's atmosphere. In practice, this should be sub-classed for real satellite experiments.

Parameters:

Name Type Description Default
name str

Site name

required
uid int

Unique identifier. If not specified, constructed from a hash of the site name.

None
Source code in toast/instrument.py
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
class SpaceSite(Site):
    """Site with no atmosphere.

    This represents a location beyond the Earth's atmosphere.  In practice, this
    should be sub-classed for real satellite experiments.

    Args:
        name (str):  Site name
        uid (int):  Unique identifier.  If not specified, constructed from a hash
            of the site name.

    """

    def __init__(self, name, uid=None):
        super().__init__(name, uid)

    def __repr__(self):
        value = "<SpaceSite '{}' : uid = {}>".format(self.name, self.uid)
        return value

    def _position_velocity(self, times):
        # Compute data at 10 minute intervals and interpolate.  If the timestamps are
        # more coarsely sampled than that, just compute those times directly.
        sparse_incr = 600.0
        do_interp = True
        if len(times) < 100 or (times[1] - times[0]) > sparse_incr:
            do_interp = False

        if do_interp:
            n_sparse = 1 + int((times[-1] - times[0]) / sparse_incr)
            sparse_times = np.linspace(times[0], times[-1], num=n_sparse, endpoint=True)
        else:
            n_sparse = len(times)
            sparse_times = times
        pos_x = np.zeros(n_sparse, np.float64)
        pos_y = np.zeros(n_sparse, np.float64)
        pos_z = np.zeros(n_sparse, np.float64)
        vel_x = np.zeros(n_sparse, np.float64)
        vel_y = np.zeros(n_sparse, np.float64)
        vel_z = np.zeros(n_sparse, np.float64)
        for i, t in enumerate(sparse_times):
            atime = astime.Time(t, format="unix")
            # Get the satellite position and velocity in the equatorial frame (ICRS)
            p, v = coord.get_body_barycentric_posvel("earth", atime)
            # FIXME:  apply translation from earth center to L2.
            pm = p.xyz.to_value(u.kilometer)
            vm = v.xyz.to_value(u.kilometer / u.second)
            pos_x[i] = pm[0]
            pos_y[i] = pm[1]
            pos_z[i] = pm[2]
            vel_x[i] = vm[0]
            vel_y[i] = vm[1]
            vel_z[i] = vm[2]

        if do_interp:
            pos_x = np.interp(times, sparse_times, pos_x)
            pos_y = np.interp(times, sparse_times, pos_y)
            pos_z = np.interp(times, sparse_times, pos_z)
            vel_x = np.interp(times, sparse_times, vel_x)
            vel_y = np.interp(times, sparse_times, vel_y)
            vel_z = np.interp(times, sparse_times, vel_z)
        pos = np.stack([pos_x, pos_y, pos_z], axis=-1)
        vel = np.stack([vel_x, vel_y, vel_z], axis=-1)
        return pos, vel

    def _position(self, times):
        p, v = self._position_velocity(times)
        return p

    def _velocity(self, times):
        p, v = self._position_velocity(times)
        return v

    @classmethod
    def _load_hdf5(cls, handle, comm=None, **kwargs):
        """Load the site from an HDF5 group.

        Args:
            handle (h5py.Group):  The group containing the site information.
            comm (MPI.Comm):  If loading from a file, optional communicator.

        Returns:
            None

        """
        # Determine if we need to broadcast results.  This occurs if only one process
        # has the file open but the communicator has more than one process.
        need_bcast = hdf5_use_serial(handle, comm) and comm is not None

        site_name = None
        site_uid = None
        if handle is not None:
            site_name = str(handle.attrs["site_name"])
            site_uid = int(handle.attrs["site_uid"])

        if need_bcast:
            site_name = comm.bcast(site_name, root=0)
            site_uid = comm.bcast(site_uid, root=0)

        return cls(site_name, uid=site_uid)

    def _save_hdf5(self, handle, comm=None, **kwargs):
        if handle is not None:
            handle.attrs["site_name"] = self.name
            handle.attrs["site_uid"] = self.uid

__init__(name, uid=None)

Source code in toast/instrument.py
367
368
def __init__(self, name, uid=None):
    super().__init__(name, uid)

__repr__()

Source code in toast/instrument.py
370
371
372
def __repr__(self):
    value = "<SpaceSite '{}' : uid = {}>".format(self.name, self.uid)
    return value

_load_hdf5(handle, comm=None, **kwargs) classmethod

Load the site from an HDF5 group.

Parameters:

Name Type Description Default
handle Group

The group containing the site information.

required
comm Comm

If loading from a file, optional communicator.

None

Returns:

Type Description

None

Source code in toast/instrument.py
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
@classmethod
def _load_hdf5(cls, handle, comm=None, **kwargs):
    """Load the site from an HDF5 group.

    Args:
        handle (h5py.Group):  The group containing the site information.
        comm (MPI.Comm):  If loading from a file, optional communicator.

    Returns:
        None

    """
    # Determine if we need to broadcast results.  This occurs if only one process
    # has the file open but the communicator has more than one process.
    need_bcast = hdf5_use_serial(handle, comm) and comm is not None

    site_name = None
    site_uid = None
    if handle is not None:
        site_name = str(handle.attrs["site_name"])
        site_uid = int(handle.attrs["site_uid"])

    if need_bcast:
        site_name = comm.bcast(site_name, root=0)
        site_uid = comm.bcast(site_uid, root=0)

    return cls(site_name, uid=site_uid)

_position(times)

Source code in toast/instrument.py
419
420
421
def _position(self, times):
    p, v = self._position_velocity(times)
    return p

_position_velocity(times)

Source code in toast/instrument.py
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
def _position_velocity(self, times):
    # Compute data at 10 minute intervals and interpolate.  If the timestamps are
    # more coarsely sampled than that, just compute those times directly.
    sparse_incr = 600.0
    do_interp = True
    if len(times) < 100 or (times[1] - times[0]) > sparse_incr:
        do_interp = False

    if do_interp:
        n_sparse = 1 + int((times[-1] - times[0]) / sparse_incr)
        sparse_times = np.linspace(times[0], times[-1], num=n_sparse, endpoint=True)
    else:
        n_sparse = len(times)
        sparse_times = times
    pos_x = np.zeros(n_sparse, np.float64)
    pos_y = np.zeros(n_sparse, np.float64)
    pos_z = np.zeros(n_sparse, np.float64)
    vel_x = np.zeros(n_sparse, np.float64)
    vel_y = np.zeros(n_sparse, np.float64)
    vel_z = np.zeros(n_sparse, np.float64)
    for i, t in enumerate(sparse_times):
        atime = astime.Time(t, format="unix")
        # Get the satellite position and velocity in the equatorial frame (ICRS)
        p, v = coord.get_body_barycentric_posvel("earth", atime)
        # FIXME:  apply translation from earth center to L2.
        pm = p.xyz.to_value(u.kilometer)
        vm = v.xyz.to_value(u.kilometer / u.second)
        pos_x[i] = pm[0]
        pos_y[i] = pm[1]
        pos_z[i] = pm[2]
        vel_x[i] = vm[0]
        vel_y[i] = vm[1]
        vel_z[i] = vm[2]

    if do_interp:
        pos_x = np.interp(times, sparse_times, pos_x)
        pos_y = np.interp(times, sparse_times, pos_y)
        pos_z = np.interp(times, sparse_times, pos_z)
        vel_x = np.interp(times, sparse_times, vel_x)
        vel_y = np.interp(times, sparse_times, vel_y)
        vel_z = np.interp(times, sparse_times, vel_z)
    pos = np.stack([pos_x, pos_y, pos_z], axis=-1)
    vel = np.stack([vel_x, vel_y, vel_z], axis=-1)
    return pos, vel

_save_hdf5(handle, comm=None, **kwargs)

Source code in toast/instrument.py
455
456
457
458
def _save_hdf5(self, handle, comm=None, **kwargs):
    if handle is not None:
        handle.attrs["site_name"] = self.name
        handle.attrs["site_uid"] = self.uid

_velocity(times)

Source code in toast/instrument.py
423
424
425
def _velocity(self, times):
    p, v = self._position_velocity(times)
    return v

toast.instrument.Bandpass

Bases: object

Class that contains the bandpass information for an entire focalplane.

Source code in toast/instrument.py
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
class Bandpass(object):
    """Class that contains the bandpass information for an entire focalplane."""

    @function_timer
    def __init__(self, bandcenters, bandwidths, nstep=101):
        """All units in GHz

        Args :
            bandcenters(dict) : Dictionary of bandpass centers
            bandwidths(dict) : Dictionary of bandpass widths
            nstep(int) : Number of interplation steps to use in `convolve()`
        """
        self.nstep = nstep
        self.dets = []
        self._fmin = {}
        self._fmax = {}
        for name in bandcenters:
            self.dets.append(name)
            center = bandcenters[name]
            width = bandwidths[name]
            self._fmin[name] = center - 0.5 * width
            self._fmax[name] = center + 0.5 * width
        # The interpolated bandpasses will be cached as needed
        self._fmin_tot = None
        self._fmax_tot = None
        self._freqs = {}
        self._bandpass = {}
        self._kcmb2jysr = {}
        self._kcmb2krj = {}
        self._kcmb2w = {}

    @function_timer
    def get_range(self, det=None):
        """Return the maximum range of frequencies needed for convolution."""
        if det is not None:
            return self._fmin[det], self._fmax[det]
        elif self._fmin_tot is None:
            self._fmin_tot = min(self._fmin.values())
            self._fmax_tot = max(self._fmax.values())
        return self._fmin_tot, self._fmax_tot

    @function_timer
    def center_frequency(self, det, alpha=-1):
        """Return the effective central frequency for a given spectral index"""

        # Which delta function bandpass would produce the same flux density
        freqs = self.freqs(det)
        if alpha == 0:
            # The equation is singular at alpha == 0. Evaluate it on both sides
            # and return the average
            delta = 1e-6
            alpha1 = alpha - delta
            eff1 = self.convolve(det, freqs, freqs.to_value(u.Hz) ** alpha1) ** (
                1 / alpha1
            )
            alpha2 = alpha + delta
            eff2 = self.convolve(det, freqs, freqs.to_value(u.Hz) ** alpha2) ** (
                1 / alpha2
            )
            eff = 0.5 * (eff1 + eff2)
        else:
            # Very simple closed form
            eff = self.convolve(det, freqs, freqs.to_value(u.Hz) ** alpha) ** (
                1 / alpha
            )

        return eff * u.Hz

    @function_timer
    def optical_loading(self, det, T):
        """Return the optical loading of a blackbody source.
        Assumes a diffraction-limited, single-moded polarimeter
        and perfect optical efficiency
        arXiv:1806.04316

        Args:
            det(str) : detector name
            T(float) : Source temperature in Kelvin

        Returns:
            (float) : The optical loading in Watts
        """

        bandpass = self.bandpass(det)
        # Normalize the bandpass to peak at 1
        bandpass = bandpass / np.amax(bandpass)
        freqs = self.freqs(det).to_value(u.Hz)

        # Power spectral density
        S = h * freqs / (np.exp(h * freqs / k / T) - 1)

        # Integrate over frequency to get power
        power = integrate_simpson(freqs, S * bandpass)

        return power

    @function_timer
    def _get_unit_conversion_coefficients(self, det):
        """Compute and cache the unit conversion coefficients for one detector"""

        if (
            det not in self._kcmb2jysr
            or det not in self._kcmb2krj
            or det not in self._kcmb2w
        ):
            # The calculation is a copy from the Hildebrandt and Macias-Perez IDL module for Planck

            nu_cmb = k * TCMB / h
            alpha = 2 * k**3 * TCMB**2 / h**2 / c**2

            cfreq = self.center_frequency(det).to_value(u.Hz)
            freqs = self.freqs(det).to_value(u.Hz)
            bandpass = self.bandpass(det)

            x = freqs / nu_cmb
            db_dt = alpha * x**4 * np.exp(x) / (np.exp(x) - 1) ** 2
            db_dt_rj = 2 * freqs**2 * k / c**2

            self._kcmb2jysr[det] = (
                1e26
                * integrate_simpson(freqs, db_dt * bandpass)
                / integrate_simpson(freqs, cfreq / freqs * bandpass)
            )
            self._kcmb2krj[det] = integrate_simpson(
                freqs, db_dt * bandpass
            ) / integrate_simpson(freqs, db_dt_rj * bandpass)

            # K_CMB->W conversion is from the BoloCalc paper, arXiv:1806.04316
            bandpass = bandpass / np.amax(bandpass)
            self._kcmb2w[det] = integrate_simpson(
                freqs,
                k * (x / (np.exp(x) - 1)) ** 2 * np.exp(x) * bandpass,
            )

        return

    @function_timer
    def freqs(self, det):
        if det not in self._freqs:
            fmin = self._fmin[det].to_value(u.Hz)
            fmax = self._fmax[det].to_value(u.Hz)
            self._freqs[det] = np.linspace(fmin, fmax, self.nstep) * u.Hz
        return self._freqs[det]

    @function_timer
    def bandpass(self, det):
        if det not in self._bandpass:
            # Normalize and interpolate the bandpass
            freqs = self.freqs(det)
            try:
                # If we have a tabulated bandpass, interpolate it
                self._bandpass[det] = np.interp(
                    freqs.to_value(u.Hz),
                    self._bins[det].to_value(u.Hz),
                    self._values[det],
                )
            except AttributeError:
                self._bandpass[det] = np.ones(self.nstep)

            # norm = simpson(self.bandpass[det], x=self.freqs[det])
            norm = integrate_simpson(freqs.to_value(u.Hz), self._bandpass[det])
            if norm == 0:
                raise RuntimeError("Bandpass cannot be normalized")
            self._bandpass[det] /= norm

        return self._bandpass[det]

    @function_timer
    def kcmb2jysr(self, det):
        """Return the unit conversion between K_CMB and Jy/sr"""
        self._get_unit_conversion_coefficients(det)
        return self._kcmb2jysr[det]

    @function_timer
    def kcmb2krj(self, det):
        """Return the unit conversion between K_CMB and K_RJ"""
        self._get_unit_conversion_coefficients(det)
        return self._kcmb2krj[det]

    @function_timer
    def kcmb2w(self, det):
        """Return the unit conversion between K_CMB and W"""
        self._get_unit_conversion_coefficients(det)
        return self._kcmb2w[det]

    @function_timer
    def convolve(self, det, freqs, spectrum, rj=False):
        """Convolve the provided spectrum with the detector bandpass

        Args:
            det(str):  Detector name
            freqs(array of floats):  Spectral bin locations
            spectrum(array of floats):  Spectral bin values
            rj(bool):  Input spectrum is in Rayleigh-Jeans units and
                should be converted into thermal units for convolution

        Returns:
            (array):  The bandpass-convolved spectrum
        """
        freqs_det = self.freqs(det)
        bandpass_det = self.bandpass(det)

        # Interpolate spectrum values to bandpass frequencies
        spectrum_det = np.interp(
            freqs_det.to_value(u.Hz), freqs.to_value(u.Hz), spectrum
        )

        if rj:
            # From brightness to thermodynamic units
            x = h * freqs_det.to_value(u.Hz) / k / TCMB
            rj2cmb = (x / (np.exp(x / 2) - np.exp(-x / 2))) ** -2
            spectrum_det *= rj2cmb

        # Average across the bandpass
        convolved = integrate_simpson(
            freqs_det.to_value(u.Hz), spectrum_det * bandpass_det
        )

        return convolved

_bandpass = {} instance-attribute

_fmax = {} instance-attribute

_fmax_tot = None instance-attribute

_fmin = {} instance-attribute

_fmin_tot = None instance-attribute

_freqs = {} instance-attribute

_kcmb2jysr = {} instance-attribute

_kcmb2krj = {} instance-attribute

_kcmb2w = {} instance-attribute

dets = [] instance-attribute

nstep = nstep instance-attribute

__init__(bandcenters, bandwidths, nstep=101)

All units in GHz

Args

bandcenters(dict) : Dictionary of bandpass centers bandwidths(dict) : Dictionary of bandpass widths nstep(int) : Number of interplation steps to use in convolve()

Source code in toast/instrument.py
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
@function_timer
def __init__(self, bandcenters, bandwidths, nstep=101):
    """All units in GHz

    Args :
        bandcenters(dict) : Dictionary of bandpass centers
        bandwidths(dict) : Dictionary of bandpass widths
        nstep(int) : Number of interplation steps to use in `convolve()`
    """
    self.nstep = nstep
    self.dets = []
    self._fmin = {}
    self._fmax = {}
    for name in bandcenters:
        self.dets.append(name)
        center = bandcenters[name]
        width = bandwidths[name]
        self._fmin[name] = center - 0.5 * width
        self._fmax[name] = center + 0.5 * width
    # The interpolated bandpasses will be cached as needed
    self._fmin_tot = None
    self._fmax_tot = None
    self._freqs = {}
    self._bandpass = {}
    self._kcmb2jysr = {}
    self._kcmb2krj = {}
    self._kcmb2w = {}

_get_unit_conversion_coefficients(det)

Compute and cache the unit conversion coefficients for one detector

Source code in toast/instrument.py
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
@function_timer
def _get_unit_conversion_coefficients(self, det):
    """Compute and cache the unit conversion coefficients for one detector"""

    if (
        det not in self._kcmb2jysr
        or det not in self._kcmb2krj
        or det not in self._kcmb2w
    ):
        # The calculation is a copy from the Hildebrandt and Macias-Perez IDL module for Planck

        nu_cmb = k * TCMB / h
        alpha = 2 * k**3 * TCMB**2 / h**2 / c**2

        cfreq = self.center_frequency(det).to_value(u.Hz)
        freqs = self.freqs(det).to_value(u.Hz)
        bandpass = self.bandpass(det)

        x = freqs / nu_cmb
        db_dt = alpha * x**4 * np.exp(x) / (np.exp(x) - 1) ** 2
        db_dt_rj = 2 * freqs**2 * k / c**2

        self._kcmb2jysr[det] = (
            1e26
            * integrate_simpson(freqs, db_dt * bandpass)
            / integrate_simpson(freqs, cfreq / freqs * bandpass)
        )
        self._kcmb2krj[det] = integrate_simpson(
            freqs, db_dt * bandpass
        ) / integrate_simpson(freqs, db_dt_rj * bandpass)

        # K_CMB->W conversion is from the BoloCalc paper, arXiv:1806.04316
        bandpass = bandpass / np.amax(bandpass)
        self._kcmb2w[det] = integrate_simpson(
            freqs,
            k * (x / (np.exp(x) - 1)) ** 2 * np.exp(x) * bandpass,
        )

    return

bandpass(det)

Source code in toast/instrument.py
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
@function_timer
def bandpass(self, det):
    if det not in self._bandpass:
        # Normalize and interpolate the bandpass
        freqs = self.freqs(det)
        try:
            # If we have a tabulated bandpass, interpolate it
            self._bandpass[det] = np.interp(
                freqs.to_value(u.Hz),
                self._bins[det].to_value(u.Hz),
                self._values[det],
            )
        except AttributeError:
            self._bandpass[det] = np.ones(self.nstep)

        # norm = simpson(self.bandpass[det], x=self.freqs[det])
        norm = integrate_simpson(freqs.to_value(u.Hz), self._bandpass[det])
        if norm == 0:
            raise RuntimeError("Bandpass cannot be normalized")
        self._bandpass[det] /= norm

    return self._bandpass[det]

center_frequency(det, alpha=-1)

Return the effective central frequency for a given spectral index

Source code in toast/instrument.py
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
@function_timer
def center_frequency(self, det, alpha=-1):
    """Return the effective central frequency for a given spectral index"""

    # Which delta function bandpass would produce the same flux density
    freqs = self.freqs(det)
    if alpha == 0:
        # The equation is singular at alpha == 0. Evaluate it on both sides
        # and return the average
        delta = 1e-6
        alpha1 = alpha - delta
        eff1 = self.convolve(det, freqs, freqs.to_value(u.Hz) ** alpha1) ** (
            1 / alpha1
        )
        alpha2 = alpha + delta
        eff2 = self.convolve(det, freqs, freqs.to_value(u.Hz) ** alpha2) ** (
            1 / alpha2
        )
        eff = 0.5 * (eff1 + eff2)
    else:
        # Very simple closed form
        eff = self.convolve(det, freqs, freqs.to_value(u.Hz) ** alpha) ** (
            1 / alpha
        )

    return eff * u.Hz

convolve(det, freqs, spectrum, rj=False)

Convolve the provided spectrum with the detector bandpass

Parameters:

Name Type Description Default
det str

Detector name

required
freqs array of floats

Spectral bin locations

required
spectrum array of floats

Spectral bin values

required
rj bool

Input spectrum is in Rayleigh-Jeans units and should be converted into thermal units for convolution

False

Returns:

Type Description
array

The bandpass-convolved spectrum

Source code in toast/instrument.py
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
@function_timer
def convolve(self, det, freqs, spectrum, rj=False):
    """Convolve the provided spectrum with the detector bandpass

    Args:
        det(str):  Detector name
        freqs(array of floats):  Spectral bin locations
        spectrum(array of floats):  Spectral bin values
        rj(bool):  Input spectrum is in Rayleigh-Jeans units and
            should be converted into thermal units for convolution

    Returns:
        (array):  The bandpass-convolved spectrum
    """
    freqs_det = self.freqs(det)
    bandpass_det = self.bandpass(det)

    # Interpolate spectrum values to bandpass frequencies
    spectrum_det = np.interp(
        freqs_det.to_value(u.Hz), freqs.to_value(u.Hz), spectrum
    )

    if rj:
        # From brightness to thermodynamic units
        x = h * freqs_det.to_value(u.Hz) / k / TCMB
        rj2cmb = (x / (np.exp(x / 2) - np.exp(-x / 2))) ** -2
        spectrum_det *= rj2cmb

    # Average across the bandpass
    convolved = integrate_simpson(
        freqs_det.to_value(u.Hz), spectrum_det * bandpass_det
    )

    return convolved

freqs(det)

Source code in toast/instrument.py
597
598
599
600
601
602
603
@function_timer
def freqs(self, det):
    if det not in self._freqs:
        fmin = self._fmin[det].to_value(u.Hz)
        fmax = self._fmax[det].to_value(u.Hz)
        self._freqs[det] = np.linspace(fmin, fmax, self.nstep) * u.Hz
    return self._freqs[det]

get_range(det=None)

Return the maximum range of frequencies needed for convolution.

Source code in toast/instrument.py
492
493
494
495
496
497
498
499
500
@function_timer
def get_range(self, det=None):
    """Return the maximum range of frequencies needed for convolution."""
    if det is not None:
        return self._fmin[det], self._fmax[det]
    elif self._fmin_tot is None:
        self._fmin_tot = min(self._fmin.values())
        self._fmax_tot = max(self._fmax.values())
    return self._fmin_tot, self._fmax_tot

kcmb2jysr(det)

Return the unit conversion between K_CMB and Jy/sr

Source code in toast/instrument.py
628
629
630
631
632
@function_timer
def kcmb2jysr(self, det):
    """Return the unit conversion between K_CMB and Jy/sr"""
    self._get_unit_conversion_coefficients(det)
    return self._kcmb2jysr[det]

kcmb2krj(det)

Return the unit conversion between K_CMB and K_RJ

Source code in toast/instrument.py
634
635
636
637
638
@function_timer
def kcmb2krj(self, det):
    """Return the unit conversion between K_CMB and K_RJ"""
    self._get_unit_conversion_coefficients(det)
    return self._kcmb2krj[det]

kcmb2w(det)

Return the unit conversion between K_CMB and W

Source code in toast/instrument.py
640
641
642
643
644
@function_timer
def kcmb2w(self, det):
    """Return the unit conversion between K_CMB and W"""
    self._get_unit_conversion_coefficients(det)
    return self._kcmb2w[det]

optical_loading(det, T)

Return the optical loading of a blackbody source. Assumes a diffraction-limited, single-moded polarimeter and perfect optical efficiency arXiv:1806.04316

Parameters:

Name Type Description Default
det(str)

detector name

required
T(float)

Source temperature in Kelvin

required

Returns:

Type Description

(float) : The optical loading in Watts

Source code in toast/instrument.py
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
@function_timer
def optical_loading(self, det, T):
    """Return the optical loading of a blackbody source.
    Assumes a diffraction-limited, single-moded polarimeter
    and perfect optical efficiency
    arXiv:1806.04316

    Args:
        det(str) : detector name
        T(float) : Source temperature in Kelvin

    Returns:
        (float) : The optical loading in Watts
    """

    bandpass = self.bandpass(det)
    # Normalize the bandpass to peak at 1
    bandpass = bandpass / np.amax(bandpass)
    freqs = self.freqs(det).to_value(u.Hz)

    # Power spectral density
    S = h * freqs / (np.exp(h * freqs / k / T) - 1)

    # Integrate over frequency to get power
    power = integrate_simpson(freqs, S * bandpass)

    return power

toast.instrument.Focalplane

Bases: object

Class representing the focalplane for one observation.

The detector_data Table may store arbitrary columns, but several are required. They include:

"name":  The detector name.
"quat":  Each row should be a 4-element numpy array.
"gamma":  If using a half wave plate, we need the rotation angle of the
    detector polarization orientation from the focalplane frame X-axis.

Some columns are optional:

"uid":  Unique integer ID for each detector.  Computed from detector name if
    not specified.
"pol_angle":  Quantity to specify the polarization angle.  Default assumes
    the polarization sensitive direction is aligned with the detector
    quaternion rotation.  Computed if not specified.
"pol_leakage":  Float value "epsilon" between 0-1.  Set to zero by default.
"pol_efficiency":  Float value "eta" = (1 - epsilon) / (1 + epsilon).  Set
    to one by default.
"fwhm":  Quantity with the nominal beam FWHM.  Used for plotting and for
    smoothing of simulated sky signal with PySM.
"bandcenter":  Quantity for the band center.  Used for bandpass integration
    with PySM simulations.
"bandwidth":  Quantity for width of the band.  Used for bandpass integration
    with PySM simulations.
"psd_net":  The detector sensitivity.  Quantity used to create a synthetic
    noise model with the DefaultNoiseModel operator.
"psd_fknee":  Quantity used to create a synthetic noise model with the
    DefaultNoiseModel operator.
"psd_fmin":  Quantity used to create a synthetic noise model with the
    DefaultNoiseModel operator.
"psd_alpha":  Quantity used to create a synthetic noise model with the
    DefaultNoiseModel operator.
"elevation_noise_a" and "elevation_noise_c":  Parameters of elevation scaling
    noise model: PSD_{out} = PSD_{ref} * (a / sin(el) + c)^2.  Only applicable
    to ground data.
"pwv_a0", "pwv_a1" and "pwv_a2":  quadratic fit of the NET modulation by
    PWV.  Only applicable to ground data.

Parameters:

Name Type Description Default
detector_data QTable

Table of detector properties.

None
field_of_view Quantity

Angular diameter of the focal plane. Used to increase the effective size of the focalplane when simulating atmosphere, etc. Will be calculated from the detector offsets by default.

None
sample_rate Quantity

The common (nominal) sample rate for all detectors.

None
thinfp int

Only sample the detectors in the file.

None
Source code in toast/instrument.py
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
class Focalplane(object):
    """Class representing the focalplane for one observation.

    The detector_data Table may store arbitrary columns, but several are required.
    They include:

        "name":  The detector name.
        "quat":  Each row should be a 4-element numpy array.
        "gamma":  If using a half wave plate, we need the rotation angle of the
            detector polarization orientation from the focalplane frame X-axis.

    Some columns are optional:

        "uid":  Unique integer ID for each detector.  Computed from detector name if
            not specified.
        "pol_angle":  Quantity to specify the polarization angle.  Default assumes
            the polarization sensitive direction is aligned with the detector
            quaternion rotation.  Computed if not specified.
        "pol_leakage":  Float value "epsilon" between 0-1.  Set to zero by default.
        "pol_efficiency":  Float value "eta" = (1 - epsilon) / (1 + epsilon).  Set
            to one by default.
        "fwhm":  Quantity with the nominal beam FWHM.  Used for plotting and for
            smoothing of simulated sky signal with PySM.
        "bandcenter":  Quantity for the band center.  Used for bandpass integration
            with PySM simulations.
        "bandwidth":  Quantity for width of the band.  Used for bandpass integration
            with PySM simulations.
        "psd_net":  The detector sensitivity.  Quantity used to create a synthetic
            noise model with the DefaultNoiseModel operator.
        "psd_fknee":  Quantity used to create a synthetic noise model with the
            DefaultNoiseModel operator.
        "psd_fmin":  Quantity used to create a synthetic noise model with the
            DefaultNoiseModel operator.
        "psd_alpha":  Quantity used to create a synthetic noise model with the
            DefaultNoiseModel operator.
        "elevation_noise_a" and "elevation_noise_c":  Parameters of elevation scaling
            noise model: PSD_{out} = PSD_{ref} * (a / sin(el) + c)^2.  Only applicable
            to ground data.
        "pwv_a0", "pwv_a1" and "pwv_a2":  quadratic fit of the NET modulation by
            PWV.  Only applicable to ground data.

    Args:
        detector_data (QTable):  Table of detector properties.
        field_of_view (Quantity):  Angular diameter of the focal plane.  Used to
            increase the effective size of the focalplane when simulating atmosphere,
            etc.  Will be calculated from the detector offsets by default.
        sample_rate (Quantity):  The common (nominal) sample rate for all detectors.
        thinfp (int):  Only sample the detectors in the file.

    """

    XAXIS, YAXIS, ZAXIS = np.eye(3)

    @function_timer
    def __init__(
        self,
        detector_data=None,
        field_of_view=None,
        sample_rate=None,
        thinfp=None,
    ):
        self.detector_data = detector_data
        self.field_of_view = field_of_view
        self.sample_rate = sample_rate
        self.thinfp = thinfp
        if detector_data is not None and len(detector_data) > 0:
            # We have some dets
            self._initialize()

    @function_timer
    def _initialize(self):
        log = Logger.get()

        if self.thinfp is not None:
            # Pick only every `thinfp` pixel on the focal plane
            ndet = len(self.detector_data)
            for idet in range(ndet - 1, -1, -1):
                if int(idet // 2) % self.thinfp != 0:
                    del self.detector_data[idet]

        # Add UID if not given
        if "uid" not in self.detector_data.colnames:
            self.detector_data.add_column(
                Column(
                    name="uid", data=[name_UID(x["name"]) for x in self.detector_data]
                )
            )

        # Build index of detector to table row
        self._det_to_row = {y["name"]: x for x, y in enumerate(self.detector_data)}

        if self.field_of_view is None:
            self._compute_fov()
        self._get_pol_angles()
        self._get_pol_efficiency()
        self._get_bandpass()

    @function_timer
    def _get_bandpass(self):
        """Use the bandpass parameters to instantiate a bandpass model"""

        if "bandcenter" in self.detector_data.colnames:
            bandcenter = {}
            bandwidth = {}
            for row in self.detector_data:
                name = row["name"]
                bandcenter[name] = row["bandcenter"]
                bandwidth[name] = row["bandwidth"]
            self.bandpass = Bandpass(bandcenter, bandwidth)
        else:
            self.bandpass = None
        return

    @function_timer
    def _compute_fov(self):
        """Compute the field of view"""
        # Find the largest distance from the bore sight
        cosangs = list()
        for row in self.detector_data:
            quat = row["quat"]
            vec = qarray.rotate(quat, self.ZAXIS)
            cosangs.append(np.dot(self.ZAXIS, vec))
        mincos = np.amin(cosangs)
        # Add a very small margin to avoid numeric issues
        # in the atmospheric simulation
        self.field_of_view = 1.01 * 2.0 * np.arccos(mincos) * u.radian
        # If we just have boresight detectors, we will need to give this some non-zero
        # value.
        if self.field_of_view == 0:
            self.field_of_view = 1.0 * u.degree

    @function_timer
    def _get_pol_angles(self):
        """Get the detector polarization angles from the quaternions"""

        if "pol_angle" not in self.detector_data.colnames:
            n_rows = len(self.detector_data)
            self.detector_data.add_column(
                Column(name="pol_angle", length=n_rows, unit=u.radian)
            )
            for row in self.detector_data:
                quat = row["quat"]
                a = quat[3]
                d = quat[2]
                pol_angle = np.arctan2(2 * a * d, a**2 - d**2) % np.pi
                row["pol_angle"] = pol_angle * u.radian

    @function_timer
    def _get_pol_efficiency(self):
        """Get the polarization efficiency from polarization leakage or vice versa"""

        n_rows = len(self.detector_data)
        if ("pol_leakage" in self.detector_data.colnames) and (
            "pol_efficiency" in self.detector_data.colnames
        ):
            # Check that efficiency and leakage are consistent
            epsilon = self.detector_data["pol_leakage"]
            eta = self.detector_data["pol_efficiency"]
            np.testing.assert_allclose(
                eta,
                (1 + epsilon) / (1 - epsilon),
                rtol=1e-6,
                err_msg="inconsistent polarization leakage and efficiency",
            )
            return
        elif "pol_leakage" in self.detector_data.colnames:
            self.detector_data.add_column(
                Column(
                    name="pol_efficiency",
                    data=[(1 - x) / (1 + x) for x in self.detector_data["pol_leakage"]],
                )
            )
        elif "pol_efficiency" in self.detector_data.colnames:
            self.detector_data.add_column(
                Column(
                    name="pol_leakage",
                    data=[
                        (1 - x) / (1 + x) for x in self.detector_data["pol_efficiency"]
                    ],
                )
            )
        else:
            self.detector_data.add_column(
                Column(name="pol_efficiency", data=np.ones(n_rows))
            )
            self.detector_data.add_column(
                Column(name="pol_leakage", data=np.zeros(n_rows))
            )

    def __contains__(self, key):
        return key in self._det_to_row

    def __getitem__(self, key):
        return self.detector_data[self._det_to_row[key]]

    def __setitem__(self, key, value):
        if key not in self._det_to_row:
            msg = "cannot assign to non-existent detector '{}'".format(key)
            raise ValueError(msg)
        indx = self._det_to_row[key]
        if hasattr(value, "fields"):
            # numpy structured array
            if value.fields is None:
                raise ValueError("assignment value must be structured")
            for cname, ctype in value.fields.items():
                if cname not in self.detector_data.colnames:
                    msg = "assignment value element '{}' is not a det column".format(
                        cname
                    )
                    raise ValueError(msg)
                self.detector_data[indx][cname] = value[cname]
        elif hasattr(value, "colnames"):
            # table row
            for c in value.colnames:
                if c not in self.detector_data.colnames:
                    msg = "assignment value element '{}' is not a det column".format(c)
                    raise ValueError(msg)
                self.detector_data[indx][c] = value[c]
        else:
            # see if it is like a dictionary
            try:
                for k, v in value.items():
                    if k not in self.detector_data.colnames:
                        msg = (
                            "assignment value element '{}' is not a det column".format(
                                k
                            )
                        )
                        raise ValueError(msg)
                    self.detector_data[indx][k] = v
            except Exception:
                raise ValueError(
                    "assignment value must be a dictionary, Row, or structured array"
                )

    @property
    def detectors(self):
        return list(self._det_to_row.keys())

    @property
    def properties(self):
        return list(self.detector_data.colnames)

    @property
    def n_detectors(self):
        return len(self._det_to_row.keys())

    def keys(self):
        return self.detectors

    @function_timer
    def detector_groups(self, column):
        """Group detectors by a common value in one property.

        This returns a dictionary whose keys are the unique values of the specified
        detector_data column.  The values for each key are a list of detectors that
        have that value.  This can be useful for creating detector sets for data
        distribution or for considering detectors with correlations.

        Since the column values will be used for dictionary keys, the column must
        be a data type which is hashable.

        Args:
            column (str):  The detector_data column.

        Returns:
            (dict):  The detector names grouped by unique column values.

        """
        if column not in self.detector_data.colnames:
            raise RuntimeError(f"'{column}' is not a valid det data column")
        detgroups = dict()
        for d in self.detectors:
            indx = self._det_to_row[d]
            val = self.detector_data[column][indx]
            if val not in detgroups:
                detgroups[val] = list()
            detgroups[val].append(d)
        return detgroups

    def __repr__(self):
        value = "<Focalplane: {} detectors, sample_rate = {} Hz, FOV = {} deg, detectors = [".format(
            len(self.detector_data),
            self.sample_rate.to_value(u.Hz),
            self.field_of_view.to_value(u.degree),
        )
        value += "{} .. {}".format(self.detectors[0], self.detectors[-1])
        value += "]>"
        return value

    def __eq__(self, other):
        if self.sample_rate != other.sample_rate:
            return False
        if self.field_of_view != other.field_of_view:
            return False
        if self.detectors != other.detectors:
            return False
        if not isinstance(self.detector_data, Table):
            msg = f"self.detector_data is not a Table ({self.detector_data})"
            raise RuntimeError(msg)
        if not isinstance(self.detector_data, Table):
            msg = f"other.detector_data is not a Table ({other.detector_data})"
            raise RuntimeError(msg)
        if not table_equal(self.detector_data, other.detector_data):
            return False
        return True

    def __ne__(self, other):
        return not self.__eq__(other)

    @classmethod
    def _load_hdf5(
        cls,
        handle,
        comm=None,
        detectors=None,
        file_det_sets=None,
        sample_rate=None,
        **kwargs,
    ):
        """Load a base class Focalplane"""
        log = Logger.get()

        # Determine if we need to broadcast results.  This occurs if only one process
        # has the file open but the communicator has more than one process.
        need_bcast = hdf5_use_serial(handle, comm) and comm is not None

        detector_data = None
        field_of_view = None
        if handle is not None:
            detector_data = replace_byte_arrays(
                read_table_hdf5(handle, path="focalplane")
            )
            if sample_rate is None:
                sample_rate = detector_data.meta["sample_rate"]
            field_of_view = detector_data.meta["field_of_view"]

        if need_bcast:
            detector_data = comm.bcast(detector_data, root=0)
            sample_rate = comm.bcast(sample_rate, root=0)
            field_of_view = comm.bcast(field_of_view, root=0)

        log.debug_rank(
            f"Focalplane has {len(detector_data)} detectors that span "
            f"{field_of_view.to_value(u.deg):.3f} degrees and are sampled at "
            f"{sample_rate.to_value(u.Hz)} Hz.",
            comm=comm,
        )

        return cls(
            detector_data=detector_data,
            field_of_view=field_of_view,
            sample_rate=sample_rate,
            **kwargs,
        )

    @classmethod
    def load_hdf5(cls, handle, comm=None, **kwargs):
        """Load the focalplane from an HDF5 group.

        Args:
            handle (h5py.Group):  The group containing the "focalplane" dataset.
            comm (MPI.Comm):  If loading from a file, optional communicator.

        Returns:
            (Focalplane):  The constructed Focalplane.

        """
        # Determine if we need to broadcast results.  This occurs if only one process
        # has the file open but the communicator has more than one process.
        need_bcast = hdf5_use_serial(handle, comm) and comm is not None

        focalplane_class_name = None
        if handle is not None:
            if "focalplane_class" in handle.attrs:
                focalplane_class_name = handle.attrs["focalplane_class"]
            else:
                # Assume the base class
                focalplane_class_name = object_fullname(cls)
        if need_bcast:
            focalplane_class_name = comm.bcast(focalplane_class_name, root=0)

        focalplane_class = import_from_name(focalplane_class_name)
        return focalplane_class._load_hdf5(handle, comm=comm, **kwargs)

    def _save_hdf5(self, handle, comm=None, **kwargs):
        self.detector_data.meta["sample_rate"] = self.sample_rate
        self.detector_data.meta["field_of_view"] = self.field_of_view
        table_write_parallel_hdf5(self.detector_data, handle, "focalplane", comm=comm)

    def save_hdf5(self, handle, comm=None, **kwargs):
        """Save the focalplane to an HDF5 group.

        Args:
            handle (h5py.Group):  The parent group of the focalplane dataset.
            comm (MPI.Comm):  If saving to a file, optional communicator.

        Returns:
            None

        """
        if handle is not None:
            handle.attrs["focalplane_class"] = object_fullname(self.__class__)
        self._save_hdf5(handle, comm=comm, **kwargs)

detector_data = detector_data instance-attribute

detectors property

field_of_view = field_of_view instance-attribute

n_detectors property

properties property

sample_rate = sample_rate instance-attribute

thinfp = thinfp instance-attribute

__contains__(key)

Source code in toast/instrument.py
871
872
def __contains__(self, key):
    return key in self._det_to_row

__eq__(other)

Source code in toast/instrument.py
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
def __eq__(self, other):
    if self.sample_rate != other.sample_rate:
        return False
    if self.field_of_view != other.field_of_view:
        return False
    if self.detectors != other.detectors:
        return False
    if not isinstance(self.detector_data, Table):
        msg = f"self.detector_data is not a Table ({self.detector_data})"
        raise RuntimeError(msg)
    if not isinstance(self.detector_data, Table):
        msg = f"other.detector_data is not a Table ({other.detector_data})"
        raise RuntimeError(msg)
    if not table_equal(self.detector_data, other.detector_data):
        return False
    return True

__getitem__(key)

Source code in toast/instrument.py
874
875
def __getitem__(self, key):
    return self.detector_data[self._det_to_row[key]]

__init__(detector_data=None, field_of_view=None, sample_rate=None, thinfp=None)

Source code in toast/instrument.py
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
@function_timer
def __init__(
    self,
    detector_data=None,
    field_of_view=None,
    sample_rate=None,
    thinfp=None,
):
    self.detector_data = detector_data
    self.field_of_view = field_of_view
    self.sample_rate = sample_rate
    self.thinfp = thinfp
    if detector_data is not None and len(detector_data) > 0:
        # We have some dets
        self._initialize()

__ne__(other)

Source code in toast/instrument.py
989
990
def __ne__(self, other):
    return not self.__eq__(other)

__repr__()

Source code in toast/instrument.py
962
963
964
965
966
967
968
969
970
def __repr__(self):
    value = "<Focalplane: {} detectors, sample_rate = {} Hz, FOV = {} deg, detectors = [".format(
        len(self.detector_data),
        self.sample_rate.to_value(u.Hz),
        self.field_of_view.to_value(u.degree),
    )
    value += "{} .. {}".format(self.detectors[0], self.detectors[-1])
    value += "]>"
    return value

__setitem__(key, value)

Source code in toast/instrument.py
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
def __setitem__(self, key, value):
    if key not in self._det_to_row:
        msg = "cannot assign to non-existent detector '{}'".format(key)
        raise ValueError(msg)
    indx = self._det_to_row[key]
    if hasattr(value, "fields"):
        # numpy structured array
        if value.fields is None:
            raise ValueError("assignment value must be structured")
        for cname, ctype in value.fields.items():
            if cname not in self.detector_data.colnames:
                msg = "assignment value element '{}' is not a det column".format(
                    cname
                )
                raise ValueError(msg)
            self.detector_data[indx][cname] = value[cname]
    elif hasattr(value, "colnames"):
        # table row
        for c in value.colnames:
            if c not in self.detector_data.colnames:
                msg = "assignment value element '{}' is not a det column".format(c)
                raise ValueError(msg)
            self.detector_data[indx][c] = value[c]
    else:
        # see if it is like a dictionary
        try:
            for k, v in value.items():
                if k not in self.detector_data.colnames:
                    msg = (
                        "assignment value element '{}' is not a det column".format(
                            k
                        )
                    )
                    raise ValueError(msg)
                self.detector_data[indx][k] = v
        except Exception:
            raise ValueError(
                "assignment value must be a dictionary, Row, or structured array"
            )

_compute_fov()

Compute the field of view

Source code in toast/instrument.py
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
@function_timer
def _compute_fov(self):
    """Compute the field of view"""
    # Find the largest distance from the bore sight
    cosangs = list()
    for row in self.detector_data:
        quat = row["quat"]
        vec = qarray.rotate(quat, self.ZAXIS)
        cosangs.append(np.dot(self.ZAXIS, vec))
    mincos = np.amin(cosangs)
    # Add a very small margin to avoid numeric issues
    # in the atmospheric simulation
    self.field_of_view = 1.01 * 2.0 * np.arccos(mincos) * u.radian
    # If we just have boresight detectors, we will need to give this some non-zero
    # value.
    if self.field_of_view == 0:
        self.field_of_view = 1.0 * u.degree

_get_bandpass()

Use the bandpass parameters to instantiate a bandpass model

Source code in toast/instrument.py
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
@function_timer
def _get_bandpass(self):
    """Use the bandpass parameters to instantiate a bandpass model"""

    if "bandcenter" in self.detector_data.colnames:
        bandcenter = {}
        bandwidth = {}
        for row in self.detector_data:
            name = row["name"]
            bandcenter[name] = row["bandcenter"]
            bandwidth[name] = row["bandwidth"]
        self.bandpass = Bandpass(bandcenter, bandwidth)
    else:
        self.bandpass = None
    return

_get_pol_angles()

Get the detector polarization angles from the quaternions

Source code in toast/instrument.py
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
@function_timer
def _get_pol_angles(self):
    """Get the detector polarization angles from the quaternions"""

    if "pol_angle" not in self.detector_data.colnames:
        n_rows = len(self.detector_data)
        self.detector_data.add_column(
            Column(name="pol_angle", length=n_rows, unit=u.radian)
        )
        for row in self.detector_data:
            quat = row["quat"]
            a = quat[3]
            d = quat[2]
            pol_angle = np.arctan2(2 * a * d, a**2 - d**2) % np.pi
            row["pol_angle"] = pol_angle * u.radian

_get_pol_efficiency()

Get the polarization efficiency from polarization leakage or vice versa

Source code in toast/instrument.py
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
@function_timer
def _get_pol_efficiency(self):
    """Get the polarization efficiency from polarization leakage or vice versa"""

    n_rows = len(self.detector_data)
    if ("pol_leakage" in self.detector_data.colnames) and (
        "pol_efficiency" in self.detector_data.colnames
    ):
        # Check that efficiency and leakage are consistent
        epsilon = self.detector_data["pol_leakage"]
        eta = self.detector_data["pol_efficiency"]
        np.testing.assert_allclose(
            eta,
            (1 + epsilon) / (1 - epsilon),
            rtol=1e-6,
            err_msg="inconsistent polarization leakage and efficiency",
        )
        return
    elif "pol_leakage" in self.detector_data.colnames:
        self.detector_data.add_column(
            Column(
                name="pol_efficiency",
                data=[(1 - x) / (1 + x) for x in self.detector_data["pol_leakage"]],
            )
        )
    elif "pol_efficiency" in self.detector_data.colnames:
        self.detector_data.add_column(
            Column(
                name="pol_leakage",
                data=[
                    (1 - x) / (1 + x) for x in self.detector_data["pol_efficiency"]
                ],
            )
        )
    else:
        self.detector_data.add_column(
            Column(name="pol_efficiency", data=np.ones(n_rows))
        )
        self.detector_data.add_column(
            Column(name="pol_leakage", data=np.zeros(n_rows))
        )

_initialize()

Source code in toast/instrument.py
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
@function_timer
def _initialize(self):
    log = Logger.get()

    if self.thinfp is not None:
        # Pick only every `thinfp` pixel on the focal plane
        ndet = len(self.detector_data)
        for idet in range(ndet - 1, -1, -1):
            if int(idet // 2) % self.thinfp != 0:
                del self.detector_data[idet]

    # Add UID if not given
    if "uid" not in self.detector_data.colnames:
        self.detector_data.add_column(
            Column(
                name="uid", data=[name_UID(x["name"]) for x in self.detector_data]
            )
        )

    # Build index of detector to table row
    self._det_to_row = {y["name"]: x for x, y in enumerate(self.detector_data)}

    if self.field_of_view is None:
        self._compute_fov()
    self._get_pol_angles()
    self._get_pol_efficiency()
    self._get_bandpass()

_load_hdf5(handle, comm=None, detectors=None, file_det_sets=None, sample_rate=None, **kwargs) classmethod

Load a base class Focalplane

Source code in toast/instrument.py
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
@classmethod
def _load_hdf5(
    cls,
    handle,
    comm=None,
    detectors=None,
    file_det_sets=None,
    sample_rate=None,
    **kwargs,
):
    """Load a base class Focalplane"""
    log = Logger.get()

    # Determine if we need to broadcast results.  This occurs if only one process
    # has the file open but the communicator has more than one process.
    need_bcast = hdf5_use_serial(handle, comm) and comm is not None

    detector_data = None
    field_of_view = None
    if handle is not None:
        detector_data = replace_byte_arrays(
            read_table_hdf5(handle, path="focalplane")
        )
        if sample_rate is None:
            sample_rate = detector_data.meta["sample_rate"]
        field_of_view = detector_data.meta["field_of_view"]

    if need_bcast:
        detector_data = comm.bcast(detector_data, root=0)
        sample_rate = comm.bcast(sample_rate, root=0)
        field_of_view = comm.bcast(field_of_view, root=0)

    log.debug_rank(
        f"Focalplane has {len(detector_data)} detectors that span "
        f"{field_of_view.to_value(u.deg):.3f} degrees and are sampled at "
        f"{sample_rate.to_value(u.Hz)} Hz.",
        comm=comm,
    )

    return cls(
        detector_data=detector_data,
        field_of_view=field_of_view,
        sample_rate=sample_rate,
        **kwargs,
    )

_save_hdf5(handle, comm=None, **kwargs)

Source code in toast/instrument.py
1067
1068
1069
1070
def _save_hdf5(self, handle, comm=None, **kwargs):
    self.detector_data.meta["sample_rate"] = self.sample_rate
    self.detector_data.meta["field_of_view"] = self.field_of_view
    table_write_parallel_hdf5(self.detector_data, handle, "focalplane", comm=comm)

detector_groups(column)

Group detectors by a common value in one property.

This returns a dictionary whose keys are the unique values of the specified detector_data column. The values for each key are a list of detectors that have that value. This can be useful for creating detector sets for data distribution or for considering detectors with correlations.

Since the column values will be used for dictionary keys, the column must be a data type which is hashable.

Parameters:

Name Type Description Default
column str

The detector_data column.

required

Returns:

Type Description
dict

The detector names grouped by unique column values.

Source code in toast/instrument.py
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
@function_timer
def detector_groups(self, column):
    """Group detectors by a common value in one property.

    This returns a dictionary whose keys are the unique values of the specified
    detector_data column.  The values for each key are a list of detectors that
    have that value.  This can be useful for creating detector sets for data
    distribution or for considering detectors with correlations.

    Since the column values will be used for dictionary keys, the column must
    be a data type which is hashable.

    Args:
        column (str):  The detector_data column.

    Returns:
        (dict):  The detector names grouped by unique column values.

    """
    if column not in self.detector_data.colnames:
        raise RuntimeError(f"'{column}' is not a valid det data column")
    detgroups = dict()
    for d in self.detectors:
        indx = self._det_to_row[d]
        val = self.detector_data[column][indx]
        if val not in detgroups:
            detgroups[val] = list()
        detgroups[val].append(d)
    return detgroups

keys()

Source code in toast/instrument.py
929
930
def keys(self):
    return self.detectors

load_hdf5(handle, comm=None, **kwargs) classmethod

Load the focalplane from an HDF5 group.

Parameters:

Name Type Description Default
handle Group

The group containing the "focalplane" dataset.

required
comm Comm

If loading from a file, optional communicator.

None

Returns:

Type Description
Focalplane

The constructed Focalplane.

Source code in toast/instrument.py
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
@classmethod
def load_hdf5(cls, handle, comm=None, **kwargs):
    """Load the focalplane from an HDF5 group.

    Args:
        handle (h5py.Group):  The group containing the "focalplane" dataset.
        comm (MPI.Comm):  If loading from a file, optional communicator.

    Returns:
        (Focalplane):  The constructed Focalplane.

    """
    # Determine if we need to broadcast results.  This occurs if only one process
    # has the file open but the communicator has more than one process.
    need_bcast = hdf5_use_serial(handle, comm) and comm is not None

    focalplane_class_name = None
    if handle is not None:
        if "focalplane_class" in handle.attrs:
            focalplane_class_name = handle.attrs["focalplane_class"]
        else:
            # Assume the base class
            focalplane_class_name = object_fullname(cls)
    if need_bcast:
        focalplane_class_name = comm.bcast(focalplane_class_name, root=0)

    focalplane_class = import_from_name(focalplane_class_name)
    return focalplane_class._load_hdf5(handle, comm=comm, **kwargs)

save_hdf5(handle, comm=None, **kwargs)

Save the focalplane to an HDF5 group.

Parameters:

Name Type Description Default
handle Group

The parent group of the focalplane dataset.

required
comm Comm

If saving to a file, optional communicator.

None

Returns:

Type Description

None

Source code in toast/instrument.py
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
def save_hdf5(self, handle, comm=None, **kwargs):
    """Save the focalplane to an HDF5 group.

    Args:
        handle (h5py.Group):  The parent group of the focalplane dataset.
        comm (MPI.Comm):  If saving to a file, optional communicator.

    Returns:
        None

    """
    if handle is not None:
        handle.attrs["focalplane_class"] = object_fullname(self.__class__)
    self._save_hdf5(handle, comm=comm, **kwargs)

toast.instrument.Telescope

Bases: object

Class representing telescope properties for one observation.

Parameters:

Name Type Description Default
name str

The name of the telescope.

required
uid int

The Unique ID of the telescope. If not specified, constructed from a hash of the site name.

None
focalplane Focalplane

The focalplane for this observation.

None
site Site

The site of the telescope for this observation.

None
Source code in toast/instrument.py
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
class Telescope(object):
    """Class representing telescope properties for one observation.

    Args:
        name (str):  The name of the telescope.
        uid (int):  The Unique ID of the telescope.  If not specified, constructed from
            a hash of the site name.
        focalplane (Focalplane):  The focalplane for this observation.
        site (Site):  The site of the telescope for this observation.

    """

    def __init__(self, name, uid=None, focalplane=None, site=None):
        self.name = name
        self.uid = uid
        if self.uid is None:
            self.uid = name_UID(name)
        if not isinstance(focalplane, Focalplane):
            raise RuntimeError("focalplane should be a Focalplane class instance")
        self.focalplane = focalplane
        if not isinstance(site, Site):
            raise RuntimeError("site should be a Site class instance")
        self.site = site

    def __repr__(self):
        value = "<Telescope '{}': uid = {}, site = {}, ".format(
            self.name,
            self.uid,
            self.site,
        )
        value += "focalplane = {}".format(self.focalplane.__repr__())
        value += ">"
        return value

    def __eq__(self, other):
        if self.name != other.name:
            return False
        if self.uid != other.uid:
            return False
        if self.site != other.site:
            return False
        if self.focalplane != other.focalplane:
            return False
        return True

    def __ne__(self, other):
        return not self.__eq__(other)

    @classmethod
    def _load_hdf5(cls, handle, comm=None, **kwargs):
        """Load the base class telescope."""
        # Determine if we need to broadcast results.  This occurs if only one process
        # has the file open but the communicator has more than one process.
        need_bcast = hdf5_use_serial(handle, comm) and comm is not None

        telescope_name = None
        telescope_uid = None
        if handle is not None:
            telescope_name = str(handle.attrs["telescope_name"])
            telescope_uid = int(handle.attrs["telescope_uid"])

        if need_bcast:
            telescope_name = comm.bcast(telescope_name, root=0)
            telescope_uid = comm.bcast(telescope_uid, root=0)

        focalplane = Focalplane.load_hdf5(handle, comm=comm, **kwargs)
        site = Site.load_hdf5(handle, comm=comm, **kwargs)

        return cls(telescope_name, uid=telescope_uid, focalplane=focalplane, site=site)

    @classmethod
    def load_hdf5(cls, handle, comm=None, **kwargs):
        """Load the telescope from an HDF5 group.

        Args:
            handle (h5py.Group):  The group containing the telescope information.
            comm (MPI.Comm):  If loading from a file, optional communicator.

        Returns:
            None

        """
        # Determine if we need to broadcast results.  This occurs if only one process
        # has the file open but the communicator has more than one process.
        need_bcast = hdf5_use_serial(handle, comm) and comm is not None

        tele_class_name = None
        if handle is not None:
            tele_class_name = str(handle.attrs["telescope_class"])

        if need_bcast:
            tele_class_name = comm.bcast(tele_class_name, root=0)

        tele_class = import_from_name(tele_class_name)
        return tele_class._load_hdf5(handle, comm=comm, **kwargs)

    def _save_hdf5(self, handle, comm=None, **kwargs):
        """Load a base class telescope"""
        if handle is not None:
            handle.attrs["telescope_name"] = self.name
            handle.attrs["telescope_uid"] = self.uid
        self.focalplane.save_hdf5(handle, comm=comm, **kwargs)
        self.site.save_hdf5(handle, comm=comm, **kwargs)

    def save_hdf5(self, handle, comm=None, **kwargs):
        """Save the telescope to an HDF5 group.

        Args:
            handle (h5py.Group):  The parent group for saving telescope properties.
            comm (MPI.Comm):  If saving to a file, optional communicator.

        Returns:
            None

        """
        if handle is not None:
            handle.attrs["telescope_class"] = object_fullname(self.__class__)
        self._save_hdf5(handle, comm=comm, **kwargs)

focalplane = focalplane instance-attribute

name = name instance-attribute

site = site instance-attribute

uid = uid instance-attribute

__eq__(other)

Source code in toast/instrument.py
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
def __eq__(self, other):
    if self.name != other.name:
        return False
    if self.uid != other.uid:
        return False
    if self.site != other.site:
        return False
    if self.focalplane != other.focalplane:
        return False
    return True

__init__(name, uid=None, focalplane=None, site=None)

Source code in toast/instrument.py
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
def __init__(self, name, uid=None, focalplane=None, site=None):
    self.name = name
    self.uid = uid
    if self.uid is None:
        self.uid = name_UID(name)
    if not isinstance(focalplane, Focalplane):
        raise RuntimeError("focalplane should be a Focalplane class instance")
    self.focalplane = focalplane
    if not isinstance(site, Site):
        raise RuntimeError("site should be a Site class instance")
    self.site = site

__ne__(other)

Source code in toast/instrument.py
1289
1290
def __ne__(self, other):
    return not self.__eq__(other)

__repr__()

Source code in toast/instrument.py
1268
1269
1270
1271
1272
1273
1274
1275
1276
def __repr__(self):
    value = "<Telescope '{}': uid = {}, site = {}, ".format(
        self.name,
        self.uid,
        self.site,
    )
    value += "focalplane = {}".format(self.focalplane.__repr__())
    value += ">"
    return value

_load_hdf5(handle, comm=None, **kwargs) classmethod

Load the base class telescope.

Source code in toast/instrument.py
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
@classmethod
def _load_hdf5(cls, handle, comm=None, **kwargs):
    """Load the base class telescope."""
    # Determine if we need to broadcast results.  This occurs if only one process
    # has the file open but the communicator has more than one process.
    need_bcast = hdf5_use_serial(handle, comm) and comm is not None

    telescope_name = None
    telescope_uid = None
    if handle is not None:
        telescope_name = str(handle.attrs["telescope_name"])
        telescope_uid = int(handle.attrs["telescope_uid"])

    if need_bcast:
        telescope_name = comm.bcast(telescope_name, root=0)
        telescope_uid = comm.bcast(telescope_uid, root=0)

    focalplane = Focalplane.load_hdf5(handle, comm=comm, **kwargs)
    site = Site.load_hdf5(handle, comm=comm, **kwargs)

    return cls(telescope_name, uid=telescope_uid, focalplane=focalplane, site=site)

_save_hdf5(handle, comm=None, **kwargs)

Load a base class telescope

Source code in toast/instrument.py
1340
1341
1342
1343
1344
1345
1346
def _save_hdf5(self, handle, comm=None, **kwargs):
    """Load a base class telescope"""
    if handle is not None:
        handle.attrs["telescope_name"] = self.name
        handle.attrs["telescope_uid"] = self.uid
    self.focalplane.save_hdf5(handle, comm=comm, **kwargs)
    self.site.save_hdf5(handle, comm=comm, **kwargs)

load_hdf5(handle, comm=None, **kwargs) classmethod

Load the telescope from an HDF5 group.

Parameters:

Name Type Description Default
handle Group

The group containing the telescope information.

required
comm Comm

If loading from a file, optional communicator.

None

Returns:

Type Description

None

Source code in toast/instrument.py
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
@classmethod
def load_hdf5(cls, handle, comm=None, **kwargs):
    """Load the telescope from an HDF5 group.

    Args:
        handle (h5py.Group):  The group containing the telescope information.
        comm (MPI.Comm):  If loading from a file, optional communicator.

    Returns:
        None

    """
    # Determine if we need to broadcast results.  This occurs if only one process
    # has the file open but the communicator has more than one process.
    need_bcast = hdf5_use_serial(handle, comm) and comm is not None

    tele_class_name = None
    if handle is not None:
        tele_class_name = str(handle.attrs["telescope_class"])

    if need_bcast:
        tele_class_name = comm.bcast(tele_class_name, root=0)

    tele_class = import_from_name(tele_class_name)
    return tele_class._load_hdf5(handle, comm=comm, **kwargs)

save_hdf5(handle, comm=None, **kwargs)

Save the telescope to an HDF5 group.

Parameters:

Name Type Description Default
handle Group

The parent group for saving telescope properties.

required
comm Comm

If saving to a file, optional communicator.

None

Returns:

Type Description

None

Source code in toast/instrument.py
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
def save_hdf5(self, handle, comm=None, **kwargs):
    """Save the telescope to an HDF5 group.

    Args:
        handle (h5py.Group):  The parent group for saving telescope properties.
        comm (MPI.Comm):  If saving to a file, optional communicator.

    Returns:
        None

    """
    if handle is not None:
        handle.attrs["telescope_class"] = object_fullname(self.__class__)
    self._save_hdf5(handle, comm=comm, **kwargs)

toast.instrument.Session

Bases: object

Class representing an observing session.

A session consists of multiple Observation instances with different sets of detectors and possibly different sample rates / times. However these observations are on the same physical telescope and over the same broad time range. A session simply tracks that time range and a unique ID which can be used to group the relevant observations.

Parameters:

Name Type Description Default
name str

The name of the session.

required
uid int

The Unique ID of the session. If not specified, it will be constructed from a hash of the name and the optional start/stop times.

None
start datetime

The overall start of the session.

None
end datetime

The overall end of the session.

None
Source code in toast/instrument.py
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
class Session(object):
    """Class representing an observing session.

    A session consists of multiple Observation instances with different sets of
    detectors and possibly different sample rates / times.  However these
    observations are on the same physical telescope and over the same broad
    time range.  A session simply tracks that time range and a unique ID which
    can be used to group the relevant observations.

    Args:
        name (str):  The name of the session.
        uid (int):  The Unique ID of the session.  If not specified, it will be
            constructed from a hash of the name and the optional start/stop times.
        start (datetime):  The overall start of the session.
        end (datetime):  The overall end of the session.

    """

    def __init__(self, name, uid=None, start=None, end=None):
        self.name = name
        for t in start, end:
            if t is not None and not isinstance(t, datetime.datetime):
                raise RuntimeError("Session start/end must be a datetime or None")
        if uid is not None:
            self.uid = uid
        else:
            # Append start and end times to the session name before
            # evaluating the hash.  This reduces the risk of clashing UIDs.
            session_name = name
            if start is not None:
                session_name += start.ctime()
            if end is not None:
                session_name += end.ctime()
            self.uid = name_UID(session_name)
        self.start = start
        self.end = end

    def __repr__(self):
        value = "<Session '{}': uid = {}, start = {}, end = {}".format(
            self.name, self.uid, self.start, self.end
        )
        value += ">"
        return value

    def __eq__(self, other):
        if self.name != other.name:
            return False
        if self.uid != other.uid:
            return False
        if self.start != other.start:
            return False
        if self.end != other.end:
            return False
        return True

    def __ne__(self, other):
        return not self.__eq__(other)

    @classmethod
    def _load_hdf5(cls, handle, comm=None, **kwargs):
        """Load the base class session"""
        # Determine if we need to broadcast results.  This occurs if only one process
        # has the file open but the communicator has more than one process.
        need_bcast = hdf5_use_serial(handle, comm) and comm is not None

        session_name = None
        session_uid = None
        session_start = None
        session_end = None
        if handle is not None:
            session_name = str(handle.attrs["session_name"])
            session_uid = int(handle.attrs["session_uid"])
            session_start = handle.attrs["session_start"]
            if str(session_start) == "NONE":
                session_start = None
            else:
                session_start = datetime.datetime.fromtimestamp(
                    float(handle.attrs["session_start"]),
                    tz=timezone.utc,
                )
            session_end = handle.attrs["session_end"]
            if str(session_end) == "NONE":
                session_end = None
            else:
                session_end = datetime.datetime.fromtimestamp(
                    float(handle.attrs["session_end"]),
                    tz=timezone.utc,
                )

        if need_bcast:
            session_name = comm.bcast(session_name, root=0)
            session_uid = comm.bcast(session_uid, root=0)
            session_start = comm.bcast(session_start, root=0)
            session_end = comm.bcast(session_end, root=0)

        return cls(session_name, uid=session_uid, start=session_start, end=session_end)

    @classmethod
    def load_hdf5(cls, handle, comm=None, **kwargs):
        """Load the session from an HDF5 group.

        Args:
            handle (h5py.Group):  The group containing the session information.
            comm (MPI.Comm):  If loading from a file, optional communicator.

        Returns:
            None

        """
        log = Logger.get()

        # Determine if we need to broadcast results.  This occurs if only one process
        # has the file open but the communicator has more than one process.
        need_bcast = hdf5_use_serial(handle, comm) and comm is not None

        session_class_name = None
        if handle is not None:
            session_class_name = str(handle.attrs["session_class"])

        if need_bcast:
            session_class_name = comm.bcast(session_class_name, root=0)

        session_class = import_from_name(session_class_name)
        return session_class._load_hdf5(handle, comm=comm, **kwargs)

    def _save_hdf5(self, handle, comm=None, **kwargs):
        """Save the base class session"""
        if handle is not None:
            handle.attrs["session_name"] = self.name
            handle.attrs["session_uid"] = self.uid
            if self.start is None:
                handle.attrs["session_start"] = "NONE"
            else:
                handle.attrs["session_start"] = self.start.timestamp()
            if self.end is None:
                handle.attrs["session_end"] = "NONE"
            else:
                handle.attrs["session_end"] = self.end.timestamp()

    def save_hdf5(self, handle, comm=None, **kwargs):
        """Save the session to an HDF5 group.

        Args:
            handle (h5py.Group):  The parent group for saving session properties.
            comm (MPI.Comm):  If saving to a file, optional communicator to broadcast
                across.

        Returns:
            None

        """
        if handle is not None:
            handle.attrs["session_class"] = object_fullname(self.__class__)
        self._save_hdf5(handle, comm=comm, **kwargs)

end = end instance-attribute

name = name instance-attribute

start = start instance-attribute

uid = uid instance-attribute

__eq__(other)

Source code in toast/instrument.py
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
def __eq__(self, other):
    if self.name != other.name:
        return False
    if self.uid != other.uid:
        return False
    if self.start != other.start:
        return False
    if self.end != other.end:
        return False
    return True

__init__(name, uid=None, start=None, end=None)

Source code in toast/instrument.py
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
def __init__(self, name, uid=None, start=None, end=None):
    self.name = name
    for t in start, end:
        if t is not None and not isinstance(t, datetime.datetime):
            raise RuntimeError("Session start/end must be a datetime or None")
    if uid is not None:
        self.uid = uid
    else:
        # Append start and end times to the session name before
        # evaluating the hash.  This reduces the risk of clashing UIDs.
        session_name = name
        if start is not None:
            session_name += start.ctime()
        if end is not None:
            session_name += end.ctime()
        self.uid = name_UID(session_name)
    self.start = start
    self.end = end

__ne__(other)

Source code in toast/instrument.py
1143
1144
def __ne__(self, other):
    return not self.__eq__(other)

__repr__()

Source code in toast/instrument.py
1125
1126
1127
1128
1129
1130
def __repr__(self):
    value = "<Session '{}': uid = {}, start = {}, end = {}".format(
        self.name, self.uid, self.start, self.end
    )
    value += ">"
    return value

_load_hdf5(handle, comm=None, **kwargs) classmethod

Load the base class session

Source code in toast/instrument.py
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
@classmethod
def _load_hdf5(cls, handle, comm=None, **kwargs):
    """Load the base class session"""
    # Determine if we need to broadcast results.  This occurs if only one process
    # has the file open but the communicator has more than one process.
    need_bcast = hdf5_use_serial(handle, comm) and comm is not None

    session_name = None
    session_uid = None
    session_start = None
    session_end = None
    if handle is not None:
        session_name = str(handle.attrs["session_name"])
        session_uid = int(handle.attrs["session_uid"])
        session_start = handle.attrs["session_start"]
        if str(session_start) == "NONE":
            session_start = None
        else:
            session_start = datetime.datetime.fromtimestamp(
                float(handle.attrs["session_start"]),
                tz=timezone.utc,
            )
        session_end = handle.attrs["session_end"]
        if str(session_end) == "NONE":
            session_end = None
        else:
            session_end = datetime.datetime.fromtimestamp(
                float(handle.attrs["session_end"]),
                tz=timezone.utc,
            )

    if need_bcast:
        session_name = comm.bcast(session_name, root=0)
        session_uid = comm.bcast(session_uid, root=0)
        session_start = comm.bcast(session_start, root=0)
        session_end = comm.bcast(session_end, root=0)

    return cls(session_name, uid=session_uid, start=session_start, end=session_end)

_save_hdf5(handle, comm=None, **kwargs)

Save the base class session

Source code in toast/instrument.py
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
def _save_hdf5(self, handle, comm=None, **kwargs):
    """Save the base class session"""
    if handle is not None:
        handle.attrs["session_name"] = self.name
        handle.attrs["session_uid"] = self.uid
        if self.start is None:
            handle.attrs["session_start"] = "NONE"
        else:
            handle.attrs["session_start"] = self.start.timestamp()
        if self.end is None:
            handle.attrs["session_end"] = "NONE"
        else:
            handle.attrs["session_end"] = self.end.timestamp()

load_hdf5(handle, comm=None, **kwargs) classmethod

Load the session from an HDF5 group.

Parameters:

Name Type Description Default
handle Group

The group containing the session information.

required
comm Comm

If loading from a file, optional communicator.

None

Returns:

Type Description

None

Source code in toast/instrument.py
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
@classmethod
def load_hdf5(cls, handle, comm=None, **kwargs):
    """Load the session from an HDF5 group.

    Args:
        handle (h5py.Group):  The group containing the session information.
        comm (MPI.Comm):  If loading from a file, optional communicator.

    Returns:
        None

    """
    log = Logger.get()

    # Determine if we need to broadcast results.  This occurs if only one process
    # has the file open but the communicator has more than one process.
    need_bcast = hdf5_use_serial(handle, comm) and comm is not None

    session_class_name = None
    if handle is not None:
        session_class_name = str(handle.attrs["session_class"])

    if need_bcast:
        session_class_name = comm.bcast(session_class_name, root=0)

    session_class = import_from_name(session_class_name)
    return session_class._load_hdf5(handle, comm=comm, **kwargs)

save_hdf5(handle, comm=None, **kwargs)

Save the session to an HDF5 group.

Parameters:

Name Type Description Default
handle Group

The parent group for saving session properties.

required
comm Comm

If saving to a file, optional communicator to broadcast across.

None

Returns:

Type Description

None

Source code in toast/instrument.py
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
def save_hdf5(self, handle, comm=None, **kwargs):
    """Save the session to an HDF5 group.

    Args:
        handle (h5py.Group):  The parent group for saving session properties.
        comm (MPI.Comm):  If saving to a file, optional communicator to broadcast
            across.

    Returns:
        None

    """
    if handle is not None:
        handle.attrs["session_class"] = object_fullname(self.__class__)
    self._save_hdf5(handle, comm=comm, **kwargs)